Adaptive Quality Estimation for Machine Translation
نویسندگان
چکیده
The automatic estimation of machine translation (MT) output quality is a hard task in which the selection of the appropriate algorithm and the most predictive features over reasonably sized training sets plays a crucial role. When moving from controlled lab evaluations to real-life scenarios the task becomes even harder. For current MT quality estimation (QE) systems, additional complexity comes from the difficulty to model user and domain changes. Indeed, the instability of the systems with respect to data coming from different distributions calls for adaptive solutions that react to new operating conditions. To tackle this issue we propose an online framework for adaptive QE that targets reactivity and robustness to user and domain changes. Contrastive experiments in different testing conditions involving user and domain changes demonstrate the effectiveness of our approach.
منابع مشابه
Adaptive HTER Estimation for Document-Specific MT Post-Editing
We present an adaptive translation quality estimation (QE) method to predict the human-targeted translation error rate (HTER) for a document-specific machine translation model. We first introduce features derived internal to the translation decoding process as well as externally from the source sentence analysis. We show the effectiveness of such features in both classification and regression o...
متن کاملتخمین اطمینان خروجی ترجمه ماشینی با استفاده از ویژگی های جدید ساختاری و محتوایی
Despite machine translation (MT) wide suc-cess over last years, this technology is still not able to exactly translate text so that except for some language pairs in certain domains, post editing its output may take longer time than human translation. Nevertheless by having an estimation of the output quality, users can manage imperfection of this tech-nology. It means we need to estimate the c...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملThe Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کاملFindings of the 2012 Workshop on Statistical Machine Translation
This paper presents the results of the WMT12 shared tasks, which included a translation task, a task for machine translation evaluation metrics, and a task for run-time estimation of machine translation quality. We conducted a large-scale manual evaluation of 103 machine translation systems submitted by 34 teams. We used the ranking of these systems to measure how strongly automatic metrics cor...
متن کامل